Manganese oxide is supplied in multiple grades—feed, fertilizer, and industrial—each defined by distinct purity levels, impurity controls, and physical specifications.

Feed-grade manganese oxide typically requires ≥60–62% Mn with strict limits on lead, arsenic, and cadmium to meet regulatory standards. Fertilizer-grade materials prioritize solubility and agronomic availability, while industrial-grade manganese oxide focuses on reaction consistency, thermal stability, and cost efficiency.

Technical Background

Manganese oxide is a general term covering several manganese–oxygen compounds used as a manganese source in nutrition, agriculture, and industrial manufacturing. In commercial supply chains, it is most commonly delivered as manganese monoxide–based material for feed and fertilizer applications, and as broader industrial oxide blends for manufacturing processes.

Functional Role by Application

  • Animal nutrition: Provides an essential trace mineral for enzyme activation, bone formation, and reproductive health.

  • Fertilizer: Supplies manganese as a micronutrient critical for photosynthesis and nitrogen metabolism.

  • Industrial processes: Acts as a reactant, pigment component, or flux in ceramics, metallurgy, and specialty chemical formulations.

Precursor quality directly influences bioavailability, reaction yield, and regulatory compliance, making grade differentiation essential.

Grade Classification of Manganese Oxide

Feed Grade Manganese Oxide

Feed-grade manganese oxide is designed for inclusion in premixes, mineral supplements, and compound feeds.

Key requirements:

  • Controlled manganese content for nutritional accuracy

  • Very low heavy metal levels

  • Fine, uniform particle size for mixing consistency

Typical specifications align with international feed regulations such as those issued by the FDA, EFSA, and FAO.

Fertilizer Grade Manganese Oxide

Fertilizer-grade manganese oxide is used in soil application, foliar sprays, or blended fertilizers.

Primary focus:

  • Agronomic effectiveness rather than ultra-high purity

  • Controlled particle size for soil dispersion

  • Stable manganese availability under different soil pH conditions

This grade balances performance and cost, making it suitable for large-scale agricultural use.

Industrial Grade Manganese Oxide

Industrial-grade manganese oxide is applied in ceramics, pigments, metallurgical fluxes, and chemical synthesis.

Defining characteristics:

  • Broader impurity tolerance

  • Particle size tailored to process needs (often >200 µm)

  • Emphasis on thermal and chemical stability

This grade is typically selected based on process compatibility rather than nutritional or agronomic criteria.

Key Benefits Linked to Material Properties

Purity and Manganese Content (%)

  • Feed grade: Typically ≥98% purity with 60–62% Mn

  • Fertilizer grade: 90–96% purity with flexible Mn content

  • Industrial grade: 85–95% purity

Higher purity improves formulation accuracy in feed, while industrial users often accept lower purity to optimize cost.

Particle Size Distribution (D50, µm)

  • Feed grade: D50 usually 20–50 µm

  • Fertilizer grade: 50–150 µm

  • Industrial grade: 100–500 µm

Smaller particles improve homogeneity in premixes, while coarser particles reduce dusting in industrial handling.

Moisture and Loss on Ignition (LOI)

  • Typical moisture: ≤1.0%

  • LOI: 2–5% depending on grade

Low moisture and controlled LOI improve shelf life, reduce caking, and stabilize downstream processing yields.

Impurity Control (ppm Level)

Heavy metals such as Pb, As, Cd, Hg, Fe, and Ni must be tightly controlled for feed and fertilizer grades.

  • Feed grade Pb: often ≤10 ppm

  • As: ≤3 ppm

  • Cd: ≤1 ppm

Industrial grade materials may allow higher limits depending on application risk.

Specification Comparison Table

ParameterFeed Grade RangeFertilizer Grade RangeIndustrial Grade RangeWhy It Matters
Purity (%)≥9890–9685–95Affects safety, accuracy, and cost
Mn Content (%)60–6250–6045–60Determines functional effectiveness
Particle Size D50 (µm)20–5050–150100–500Mixing, solubility, handling
Pb (ppm)≤10≤20≤100Regulatory and safety risk
As (ppm)≤3≤5≤50Toxicity control
Moisture (%)≤1.0≤1.5≤2.0Storage stability
LOI (%)≤3.0≤4.0≤5.0Process yield

Impact on Performance KPIs

Nutritional and Agronomic Performance

  • Accurate Mn delivery improves enzyme activity and bone strength in livestock.

  • In crops, manganese supports chlorophyll formation and nitrogen utilization.

Manufacturing Yield and Consistency

  • Uniform particle size reduces segregation in feed premixes.

  • Stable LOI minimizes mass loss during calcination or blending.

Compliance and Risk Reduction

  • Controlled heavy metals reduce rejection risk during regulatory audits.

  • Clear grade definition simplifies documentation and traceability.

Quality Control and Testing Methods

Certificate of Analysis (COA)

A compliant COA typically includes:

  • Mn content (%)

  • Purity (%)

  • Moisture and LOI

  • Heavy metal analysis

Analytical Techniques

  • ICP-OES / ICP-MS: Elemental impurities (ISO and ASTM methods)

  • Laser diffraction: Particle size distribution (ISO 13320)

  • Oven drying / muffle furnace: Moisture and LOI testing

Representative sampling is essential to ensure batch-level accuracy.

Purchasing and Supplier Evaluation Considerations

Grade Differentiation

Buyers should clearly specify whether the manganese oxide is for feed, fertilizer, or industrial use to avoid mismatched quality.

Packaging and Storage

  • Feed and fertilizer grades are typically packed in 25 kg or 1-ton bulk bags with moisture barriers.

  • Industrial grades may use bulk packaging for cost efficiency.

Logistics and HS Code

Manganese oxide is commonly shipped under HS Code 2820, but buyers should verify local customs classifications.

Common Sourcing Risks

  • Inconsistent Mn content

  • Undeclared heavy metal levels

  • Particle size variability between batches

FAQ

What manganese content is required for feed-grade manganese oxide?
Most feed applications require 60–62% Mn with purity ≥98%.

Can fertilizer-grade manganese oxide be used in animal feed?
No. Fertilizer-grade material does not meet feed safety and heavy metal standards.

Why is particle size important in feed applications?
Fine, consistent particle size ensures uniform mixing and prevents segregation.

How are heavy metals controlled?
Through raw material selection, controlled processing, and ICP-based testing.

What LOI level is acceptable?
Typically ≤3% for feed grade and ≤5% for industrial grade.

FAQ

  • Confirm application-specific grade (feed, fertilizer, industrial)

  • Specify Mn content and purity clearly

  • Set maximum limits for Pb, As, and Cd

  • Define particle size range and testing method

  • Require batch-specific COA with ICP results

  • Verify packaging and moisture protection

Related Posts

Manganese Oxide MSDS and Safety Data: Compliance for Bulk Buyers

For bulk buyers of manganese oxide, compliance with MSDS (Material Safety Data Sheet) and SDS (Safety Data Sheet) requirements is not a formality—it is a regulatory, operational, and liability-critical requirement. Different manganese oxides (MnO₂, MnO, Mn₃O₄, Mn₂O₃)...

MnO in Agriculture: Maximizing Crop Yields with Manganese Monoxide Fertilizers

Manganese monoxide (MnO) is a concentrated, inorganic manganese source increasingly used in agricultural fertilizer formulations to correct manganese deficiency and improve crop productivity. Compared with sulfate or chelated forms, MnO offers a high manganese content...

How Manganese Oxide Enhances Ceramic Glazes and Colors

Manganese oxide plays a critical functional role in ceramic glazes and pigment systems by acting as a colorant, flux modifier, and redox-active oxide. Depending on its oxidation state, purity, and particle size, manganese oxide can generate brown, black, purple, and...

The Critical Role of Manganese Oxide in Animal Nutrition and Health

Manganese oxide is a widely used inorganic trace mineral source in animal nutrition, supplying essential manganese (Mn) required for skeletal development, enzyme activation, reproductive performance, and antioxidant defense. In livestock and poultry diets, manganese...

MnO Manufacturer with Custom Production Capabilities for Specialty Needs

Manganese monoxide (MnO) is a critical intermediate material used across battery cathode precursors, ceramic pigments, metallurgical fluxes, paint driers, and specialty chemical formulations. For these applications, standard commodity MnO is often insufficient....

Evaluating MnO Suppliers: How to Ensure Consistent Quality for High-End Battery Precursors

Selecting reliable MnO suppliers is a critical decision for manufacturers of high-end battery cathode precursors. Manganese(II) oxide (MnO) is not a finished cathode material, but its purity, particle size distribution, and impurity control directly influence...

Sourcing Manganese Monoxide: A Guide for Fertilizer Manufacturers and Distributors

Manganese monoxide (MnO) is a critical micronutrient raw material used in fertilizer formulations to correct manganese deficiency in crops, particularly in alkaline or calcareous soils. Industrial fertilizer-grade MnO typically requires Mn ≥ 60–76%, controlled...

Manganese Monoxide Factory Direct Export: Seamless Global Shipping

We offer high-quality manganese monoxide (MnO) with factory direct export to manufacturers and industrial buyers worldwide. Produced under stringent quality controls, our MnO meets global standards and is optimized for applications in battery materials, ceramics,...

What to Look for in a MnO Manufacturer of High-Purity Powder (<250 µm Particle Size)

When sourcing high-purity manganese monoxide (MnO) powder with a particle size <250 µm, technical buyers must evaluate suppliers on a combination of measurable criteria: chemical purity and impurity limits (ppm), particle size distribution (PSD), manufacturing...

How to Find Manganese Monoxide Supplier for Ceramics

Manganese monoxide (MnO) is a critical raw material in ceramic production, particularly for glazes, pigments, and kiln fluxes. Its purity, particle size, and impurity profile directly influence the color, texture, and structural integrity of ceramic products....